
Abstract-A magnetocardiograph (MCG), which consists of a sensor
comprising four superconducting-quantum-interference device
(SQUID) gradiometers and a magnetic shielding cylinder made of
nanocrystalline soft magnetic materials, has been developed. The
sensor can be handled easily because the gradiometers are made of
high-critical-temperature (Tc) superconductor operated in liquid
nitrogen. Further, the shielding cylinder is lightweight (160 kg)
and compact (2 m long and 1 m in diameter). The gradiometer
balance is high enough (typically 0.1%) for recording
magnetocardiograms inside the shielding cylinder, whose shielding
factor is –35 dB at 1 Hz.

We used the new MCG to record magnetocardiograms of a
healthy volunteer at four different positions. From this
magnetocardiograms we then obtained a current arrow map, by
which mycardium activity can be estimated, at 16 sites (4 × 4
matrix) on the measurement plane. The similarity between the
current-arrow map obtained by a conventional MCG and that
from the newly developed MCG indicates that the developed
compact MCG is also capable of estimating the region of cardiac
activity.
Keywords -  SQUID, high-Tc, shielding, magnetocardiograph

I. INTRODUCTION

A magnetocardiograph (MCG) is an instrument that can
noninvasively record and visualize mycardium activity by
measuring magnetic fields generated by human hearts. MCG
has been applied to diagnosis of ischemic [1, 2] or fetal [3]
heart disease and estimation of the region of arrhythmia [4]. In
the conventional MCG [5], superconducting-quantum-
interference devices (SQUIDs) made of low-critical-
temperature (Tc) superconductors are employed, so they must
be operated in liquid helium. The difficulty in handling liquid
helium and the huge, heavy (2 × 2 × 2 m and 2000 kg)
magnetic  shielding  room  needed  obstruct the wide spread use

of MCG. High-Tc SQUIDs [6] can solve the former problem
because they can be operated in liquid nitrogen.

We have already developed high-Tc SQUID gradiometers
[7] and a magnetic shield cylinder [8]. In the current work, we
fabricated lightweight, compact, and easy-to-operate MCG
(four-channel) and demonstrated its capability for estimating
the region of mycardium activity.

II. METHOD

The fabricated MCG consists of the following components
(Fig. 1): a magnetic shielding cylinder in which a patient lies, a
dewar and four high-Tc SQUID gradiometers, conventional ac-
biased (128 kHz) flux-locked-loop (FLL) circuits to drive the
SQUIDs, a FLL controller, a conventional electrocardiograph
(ECG), a filter unit, and a 1-kHz sampling data storage. The
shielding cylinder and the SQUID gradiometer are described
below briefly.

A. Magnetic shielding cylinder

The fabricated MCG measures the normal component (z-
direction) of the magnetic field, Bz, to the measurement (x-y)
plane parallel to the patient’s chest. The open-ended shielding
cylinder by which magnetic fields perpendicular to the axis (x-
and z-directions) are shielded is suitable for this measurement,
although the shielding factor of the field parallel to the axis (y-
direction) is low. The cylinder is 2 m long, 1 m in diameter, and
weighs 160 kg. The shielding is provided by flexible sheets
made of 20-µm-thick FINEMET® (Fe-Cu-Nb-Si-B
nanocrystalline soft magnetic material [9]) ribbon sandwiched
between two polyethylene terephthalate (PET) films. The
shielding  cylinder  consists  of  three  shielding  shells  made of
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Fig. 1. Schematic diagram of the developed magnetocardiograph.
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0.5-mm-thick aluminum cylinders 50 mm apart, and the sheets
are stuck on the aluminum cylinders in 6-, 6-, and 14-sheet-
thick layers (from outside to inside). The measured shielding
factors in the x- and z-directions at the center of the cylinder are
better than –35 dB under a low-frequency (1-90 Hz) range [8].

B. Sensor

The dewar for holding liquid nitrogen is small (300 mm in
height) and has four ports for inserting sensing rods whose
centers are 46 mm apart. Each rod supports the high-Tc SQUID
gradiometer at the bottom (Fig. 3). Each gradiometer (planar
type) was fabricated from YBa2Cu3Oy films on a 15 × 15-mm
SrTiO3 bicrystal substrate (Fig. 4(a)). There are two pickup
coils and four SQUIDs (Fig. 4(b)) in each gradiometer. The
differential shielding supercurrent between the two pickup coils
flows in the four SQUIDs. Hence, by connecting one of the
SQUIDs to the FLL, each gradiometer can measure magnetic
field gradient, ∆Bz /∆x or ∆Bz /∆y, while it reduces uniform
environmental magnetic field noise. The baseline length which
is defined as the distance between the pickup coils, i.e., ∆x or
∆y, is estimated to be 6.75 mm.

The balance between the pickup coils of each gradiometer,

which determines noise reduction ratio, is extremely high
(typically 0.1 %) [7]. Moreover, the cross-talking ratio, which
is defined as the ratio of the detected field gradient to the
applied field gradient on the pickup coils of the next
gradiometer, was measured to be less than 2 × 10-6. Both the
balance and the cross-talking ratio are sufficient for recording
magnetocardiograms.

III. RESULTS AND DISCUSSION
A. Noise

The noise spectra of the gradiometers located inside (Fig.
5(a)) and outside (Fig. 5(b)) the shielding cylinder are
compared with that of the environmental magnetic field noise
(Fig. 5(c)). The noise measured by the gradiometer was
converted to field noise from gradient noise by multiplying it
by the baseline length. It is reduced to –57 dB (0.14 %) at 1 Hz
by the gradiometric structure. It is reduced a further –25 dB
(5.7 %) to –82 dB by the shielding effect of the cylinder from
environmental noise. Because the shielding factor of the
cylinder is better than –35 dB, the noise of the inside
gradiometer is apparently limited by the intrinsic noise of the
gradiometer itself. Magnetocardiograms were obtained under
the noise condition in Fig. 5(a).

B. Magnetocardiograms

Magnetocardiograms of a healthy volunteer were obtained
by the four-channel MCG (Fig. 6). They were passed through
0.1-30 Hz band pass and 50-, 100-, and 150-Hz notch filters to
remove power-line noise, then averaged over 100 beats by the
ECG. The gradient direction was selected by rotating each rod
individually. The QRS-complex and T-wave were traced
clearly. The peak-to-peak noise, nB p-p, is equivalent to or less

than 0.2 nT/m estimated from nB p-p WCBn= [10], where C is a
constant around 4, Bn is the white noise shown in Fig. 5, and W
is the bandwidth.

Fig. 2. Photograph of the magnetic
shielding cylinder.

Fig. 3. Photograph of the dewar
and one of the interior rods
supporting a high-Tc SQUID
gradiometer.

Fig. 4. Structure of the fabricated high-Tc SQUID gradiometer (a) and
photograph of the area around one of the SQUIDs (b).
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Fig. 5. Magnetic-field-noise spectra measured by one of the
fabricated gradiometers inside (a) and outside (b) the shielding
cylinder. The environmental noise is also shown (c).
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C. Current arrow map

The current arrow, vector i, at each site is calculated from
i=(∆Bz /∆y, -∆Bz /∆x) [11]. Current arrow maps can be regarded
as projections on the measurement plane of a cardiac-current
distribution [12].

We recorded magnetocardiograms under the same
conditions described in the previous section at four different
positions (Fig. 7), then we calculated current arrows at 16 sites
(4 × 4 matrix) at a 46-mm pitch. The obtained arrows
superimposed on the contour maps, which show the iso-
magnitude of the current vector i, illustrate temporal change of
the most active regions (Fig. 8; a part of QRS-complex in 5-ms
intervals).

To verify the obtained current arrow maps, we compared
them to those of the same volunteer measured by a
conventional MCG with low-Tc SQUID gradiometers (MC-
6400, Hitachi, Ltd.) [5]. The conventional MCG measures z-
gradient of normal components, ∆Bz /∆z, at 64 sites (8 × 8
matrix) at a 25-mm pitch. The current arrows are reconstructed
by spatial subtraction of the magnetocardiograms. The mapping
area of the conventional MCG (175 × 175 mm) is slightly
larger than that of the new MCG (138 × 138 mm) (Fig. 7),
whose current distributions (Fig. 8) are similar to those of the
conventional MCG (Fig. 9), although the sensing pitch is wider.
Similar results were observed regarding the T-wave region.

   ∆Bz /∆x

   ∆Bz /∆y

V. CONCLUSION

The similarity between the current-arrow map obtained by a
conventional MCG and that from the newly developed MCG
indicates that the developed compact MCG is also capable of
estimating the region of cardiac activity.

To improve the MCG, it is essential to increase the number
of channels (finally around 50 channels). And, because the
noises of the gradiometers are limited by their intrinsic noise at
present, the intrinsic noise must be reduced (or the baseline
length must be larger to increase the signals). For example, two
to three-times bigger signal-to-noise ratio would make it
possible to observe the P-wave without averaging [13]. These
improvements, together with its lightness, compactness, and
ease of use, will enable the new MCG to be applied to clinical
diagnosis extensively.
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Fig. 9. Current arrow map representing the QRS-complex of the same volunteer obtained by using a conventional MCG.
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Fig. 8. Current arrow map representing the QRS-complex of a healthy volunteer obtained by using the developed MCG.
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